Evaluation of receptor and chemical transport models for PM10 source apportionment

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain).

Receptor models are useful to understand the chemical and physical characteristics of air pollutants by identifying their sources and by estimating contributions of each source to receptor concentrations. In this work, three receptor models based on principal component analysis with absolute principal component scores (PCA-APCS), Unmix and positive matrix factorization (PMF) were applied to stu...

متن کامل

Application of Trajectory Clustering and Source Apportionment Methods for Investigating Trans-Boundary Atmospheric PM10 Pollution

A modeling framework was proposed to investigate the impact of trans-boundary air pollutant transport on regional air quality. This was based on a combination of the HYSPLIT trajectory model, the CAMx air quality model, and the MM5 meteorological model. The examination of atmospheric PM10 pollution in Guangzhou within the Pearl River Delta (PRD) region of southern China was used as a case study...

متن کامل

Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite

Sources of PM2.5 at the Fresno Supersite during high PM2.5 episodes occurring from 15 December 2000–3 February 2001 were estimated with the Chemical Mass Balance (CMB) receptor model. The ability of source profiles with organic markers to distinguish motor vehicle, residential wood combustion (RWC), and cooking emissions was evaluated with simulated data. Organics improved the distinction betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Atmospheric Environment: X

سال: 2020

ISSN: 2590-1621

DOI: 10.1016/j.aeaoa.2019.100053